Generative models have been widely applied to solve extractive tasks, where parts of the input is extracted to form the desired output, and achieved significant success. For example, in extractive question answering (QA), generative models have constantly yielded state-of-the-art results. In this work, we identify the issue of tokenization inconsistency that is commonly neglected in training these models. This issue damages the extractive nature of these tasks after the input and output are tokenized inconsistently by the tokenizer, and thus leads to performance drop as well as hallucination. We propose a simple yet effective fix to this issue and conduct a case study on extractive QA. We show that, with consistent tokenization, the model performs better in both in-domain and out-of-domain datasets, with a notable average of +1.7 F2 gain when a BART model is trained on SQuAD and evaluated on 8 QA datasets. Further, the model converges faster, and becomes less likely to generate out-of-context answers. With these findings, we would like to call for more attention on how tokenization should be done when solving extractive tasks and recommend applying consistent tokenization during training.
translated by 谷歌翻译
There has been great progress in unifying various table-to-text tasks using a single encoder-decoder model trained via multi-task learning (Xie et al., 2022). However, existing methods typically encode task information with a simple dataset name as a prefix to the encoder. This not only limits the effectiveness of multi-task learning, but also hinders the model's ability to generalize to new domains or tasks that were not seen during training, which is crucial for real-world applications. In this paper, we propose compositional task configurations, a set of prompts prepended to the encoder to improve cross-task generalization of unified models. We design the task configurations to explicitly specify the task type, as well as its input and output types. We show that this not only allows the model to better learn shared knowledge across different tasks at training, but also allows us to control the model by composing new configurations that apply novel input-output combinations in a zero-shot manner. We demonstrate via experiments over ten table-to-text tasks that our method outperforms the UnifiedSKG baseline by noticeable margins in both in-domain and zero-shot settings, with average improvements of +0.5 and +12.6 from using a T5-large backbone, respectively.
translated by 谷歌翻译
Current computer vision models, unlike the human visual system, cannot yet achieve general-purpose visual understanding. Existing efforts to create a general vision model are limited in the scope of assessed tasks and offer no overarching framework to perform them holistically. We present a new comprehensive benchmark, General-purpose Visual Understanding Evaluation (G-VUE), covering the full spectrum of visual cognitive abilities with four functional domains $\unicode{x2014}$ Perceive, Ground, Reason, and Act. The four domains are embodied in 11 carefully curated tasks, from 3D reconstruction to visual reasoning and manipulation. Along with the benchmark, we provide a general encoder-decoder framework to allow for the evaluation of arbitrary visual representation on all 11 tasks. We evaluate various pre-trained visual representations with our framework and observe that (1) Transformer-based visual backbone generally outperforms CNN-based backbone on G-VUE, (2) visual representations from vision-language pre-training are superior to those with vision-only pre-training across visual tasks. With G-VUE, we provide a holistic evaluation standard to motivate research toward building general-purpose visual systems via obtaining more general-purpose visual representations.
translated by 谷歌翻译
Finetuning language models on a collection of datasets phrased as instructions has been shown to improve model performance and generalization to unseen tasks. In this paper we explore instruction finetuning with a particular focus on (1) scaling the number of tasks, (2) scaling the model size, and (3) finetuning on chain-of-thought data. We find that instruction finetuning with the above aspects dramatically improves performance on a variety of model classes (PaLM, T5, U-PaLM), prompting setups (zero-shot, few-shot, CoT), and evaluation benchmarks (MMLU, BBH, TyDiQA, MGSM, open-ended generation). For instance, Flan-PaLM 540B instruction-finetuned on 1.8K tasks outperforms PALM 540B by a large margin (+9.4% on average). Flan-PaLM 540B achieves state-of-the-art performance on several benchmarks, such as 75.2% on five-shot MMLU. We also publicly release Flan-T5 checkpoints, which achieve strong few-shot performance even compared to much larger models, such as PaLM 62B. Overall, instruction finetuning is a general method for improving the performance and usability of pretrained language models.
translated by 谷歌翻译
我们介绍了Sparrow,这是一个寻求信息的对话代理,与提示的语言模型基线相比,训练有素,更有帮助,正确和无害。我们使用从人类反馈中的强化学习来培训我们的模型,以帮助人类评估者判断代理人的行为。首先,为了使我们的代理人更有帮助和无害,我们将良好对话的要求分解为代理人应遵循的自然语言规则,并分别向评估者询问每个规则。我们证明,这种崩溃使我们能够收集对代理行为的更多针对性的人类判断,并允许更有效的规则条件奖励模型。其次,我们的代理商在收集对模型声明的偏好判决时提供了支持事实主张的来源的证据。对于事实问题,麻雀提供的证据支持了78%的时间。比基线比基线更享受麻雀,同时对人类的对抗性探测更具弹性,在探测时只有8%的时间违反了我们的规则。最后,我们进行了广泛的分析,表明尽管我们的模型学会遵守我们的规则,但它可以表现出分布偏见。
translated by 谷歌翻译
紧张的机器人由刚性杆和柔性电缆组成,表现出高强度对重的比率和极端变形,使它们能够驾驭非结构化的地形,甚至可以在严酷的冲击力上生存。但是,由于其高维,复杂的动态和耦合体系结构,它们很难控制。基于物理学的仿真是制定运动策略的途径,然后可以将其转移到真实的机器人中,但是建模时态机器人是一项复杂的任务,因此模拟会经历大量的SIM2REAL间隙。为了解决这个问题,本文介绍了台词机器人的真实2SIM2REAL策略。该策略是基于差异物理引擎的,可以在真正的机器人(即离线测量和一个随机轨迹)中进行有限的数据进行训练,并达到足够高的精度以发现可转移的运动策略。除了整体管道之外,这项工作的主要贡献包括在接触点处计算非零梯度,损失函数和轨迹分割技术,该技术避免了训练期间梯度评估的冲突。在实际的3杆张力机器人上证明并评估了所提出的管道。
translated by 谷歌翻译
大型语言模型会产生类似人类的文本,这些文本推动了越来越多的应用。但是,最近的文献以及越来越多的现实世界观察表明,这些模型可以产生有毒,有偏见,不真实或其他有害的语言。尽管正在进行评估语言模型危害的工作,但要远见卓识转换出可能出现的危害可能会引起严格的基准。为了促进这种翻译,我们概述了六种表征有害文本的方式,这些方法在设计新基准时值得明确考虑。然后,我们将这些特征用作镜头来识别现有基准中的趋势和差距。最后,我们将它们应用于视角API的案例研究,这是一种毒性分类器,被广泛用于HARS基准。我们的特征提供了一块桥梁,可以在远见和有效评估之间转化。
translated by 谷歌翻译
本文旨在帮助构建与大规模语言模型(LMS)相关的风险景观。为了促进负责任的创新的进步,需要深入了解这些模型提出的潜在风险。详细分析了广泛的建立和预期的风险,借鉴了计算机科学,语言学和社会科学的多学科专业知识和文学。我们概述了六个具体风险领域:I.歧视,排除和毒性,II。信息危害,III。误导危害,V.恶意用途,V.人机互动危害,vi。自动化,访问和环境危害。第一个领域涉及陈规定型,不公平歧视,排他性规范,有毒语言和LMS社会群体的绩效。第二个重点侧重于私有数据泄漏或LMS正确推断敏感信息的风险。第三次解决贫困,虚假或误导性信息的风险,包括在敏感域中,以及敲门式风险,如共享信息的信任侵蚀。第四次考虑了试图使用LMS造成伤害的行动者的风险。第五部分侧重于用于支持与人类用户互动的会话代理的LLMS特异性的风险,包括不安全使用,操纵或欺骗。第六六探讨了对不同社会群体或社区可能产生不同影响的环境危害,工作自动化和其他挑战的风险。总的来说,我们审查了21个风险。我们讨论了不同风险的起源点和指向潜在的缓解方法。最后,我们讨论在实施减轻的组织职责,以及协作和参与的作用。我们强调了进一步研究的方向,特别是在扩展工具包时,用于评估和评估LMS中的概述风险。
translated by 谷歌翻译
本文介绍了一种开源平台,可快速发展计算机视觉应用。该平台在机器学习开发过程的中心进行了高效的数据开发,集成了主动学习方法,数据和型号版本控制,并使用项目等概念,以便并行启用多个任务特定数据集的快速迭代。我们通过将开发过程抽象到核心状态和操作中,设计开放式平台,并设计开放API,将第三方工具集成为操作的实现。这种开放式设计降低了ML与现有工具的ML团队的开发成本和采用费用。与此同时,该平台支持录制项目开发历史记录,可以共享成功的项目,以进一步提高类似任务的模型生产效率。该平台是开源的,已经在内部使用,以满足自定义现实世界计算机视觉应用程序的日益增长的需求。
translated by 谷歌翻译
在某些情况下,有能力的语言模型越来越饱和现有的任务基准,在某些情况下表现优于人类。这留下了很少的净空,可以衡量进一步的进步。已经提出了对抗性数据集创建作为构建更多具有挑战性的数据集的策略,以及两个常见方法是:(1)过滤易于示例和(2)循环模型数据收集。在这项工作中,我们研究了应用每种方法创造更多具有挑战性的评估数据集的影响。我们将AFLITE算法调整以筛选评估数据,并运行针对18个不同的对手模型的实验。我们发现,尽管使用更强大的对手模型,但易于选择更具挑战性的例子,降低了评估模型的性能。然而,由此产生的模型排名也可能对所用的对手模型的选择来说也是不稳定的并且非常敏感。此外,AFLITE过度的防范普普斯协议的例子,这意味着模型比较铰链在最令人争议的标记的例子上。对普遍收集的数据集ANLI和AdversarialQA的较小规模实验表明了类似的结果,在不成比例地影响对手模型的同时逐渐降低性能。
translated by 谷歌翻译